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Effects of the photospheric cut-off on the p-mode frequency stability
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ABSTRACT
Sub-photospheric acoustic resonators allow for the formation of standing p-mode oscillations by reflecting acoustic waves with
frequencies below the acoustic cut-off frequency. We employ the Klein-Gordon equation with a piecewise acoustic potential
to study the characteristic frequencies of intermediate-degree p-modes, modified by the cut-off effect. For a perfectly reflective
photosphere, provided by the infinite value of the acoustic cut-off frequency, characteristic discrete frequencies of the trapped
p-modes are fully prescribed by the width of the acoustic potential barrier. Finite values of the acoustic cut-off frequency result
in the reduction of p-mode frequencies, associated with the decrease in the sound speed by the cut-off effect. For example, for
a spherical degree of ℓ = 100, characteristic p-mode frequencies are found to decrease by up to 200 𝜇Hz and the effect is more
pronounced for higher radial harmonics. The frequency separation between two consecutive radial harmonics is shown to behave
non-asymptotically with non-uniform spacing in the radial harmonic number due to the cut-off effect. We also show how the
11-yr variability of the Sun’s photospheric magnetic field can result in the p-mode frequency shifts through the link between the
acoustic cut-off frequency and the plasma parameter 𝛽. Using this model, we readily reproduce the observed typical amplitudes
of the p-mode frequency shift and its phase behaviour relative to other 11-yr solar cycle proxies. The use of the developed model
for comparison with observations requires its generalisation for 2D effects, more realistic profiles of the acoustic potential, and
broad-band stochastic drivers.
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1 INTRODUCTION

Convection inside the Sun excites acoustic oscillations, which can
form standing waves, known as p-modes (see Basu 2016, and ref-
erences therein for a recent review). These p-modes can be readily
detected in both Doppler velocity and intensity observations of the
Sun’s photosphere. The spatial structure of the oscillations can be
described in terms of spherical harmonics, where the harmonic de-
gree, ℓ, is determined by the total number of node lines observed at
the surface. As the oscillations travel inwards towards the core of the
Sun, the waves are refracted. The depth they travel to before returning
to the surface, known as the lower turning point (LTP), is dependent
on ℓ, such that the LTP of high-ℓ modes is closer to the surface than
the LTP of low-ℓ modes. Once the oscillations reach the surface, they
are reflected by the sharp drop in density. The radius at which the
modes are reflected is known as the upper turning point (UTP) and
is primarily dependent on mode frequency, such that the UTP is at a
larger radius for high-frequency modes than low-frequency modes.
The oscillations can, therefore, be considered to be trapped within
a cavity, the radial extent of which is determined by the LTP and
UTP. The properties of the plasma within those cavities determine
the frequencies of the oscillations.

Although the Sun’s convection is capable of exciting oscillations
across a wide range of frequencies, there is an upper limit to the
frequency at which oscillations are reflected back into the interior,
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known as the observational acoustic cut-off frequency. As a conse-
quence of this, standing p-mode oscillations are only observed at
frequencies below the acoustic cut-off frequency (whereas acoustic
waves with frequencies above the acoustic cut off are permitted to
propagate out into the solar atmosphere). Although in frequency-
power spectra of helio- (or astero-) seismic oscillations, only one
acoustic cut-off frequency is observed, which distinguishes between
the p-mode and pseudomode regimes, the acoustic cut-off frequency
𝜔ac can also be defined as a parameter that varies as a function of
radius, 𝑟 ,

𝜔2
ac =

𝑐2
s

4𝐻2

(
1 − 2

d𝐻
d𝑟

)
, (1)

where 𝐻 is the density scale height and 𝑐s is the local sound speed. It
can be shown that, when using a standard solar model, 𝜔ac increases
with increasing 𝑟 before reaching a maximum just above the pho-
tosphere (e.g. Basu 2016). At a particular radius, only modes with
𝜔 > 𝜔ac are propagate and thus the observational acoustic cut-off
frequency corresponds to the maximum value of 𝜔ac. This variation
in acoustic cut-off explains why different frequency p-modes have
different UTPs.

The WKB approximation can be used to show that for p-modes of
spherical degree ℓ and radial order 𝑛,
𝑟u∫
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, (2)

(Deubner & Gough 1984; Gough 1993; Ong & Basu 2019, and
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references therein), where 𝑆ℓ is the Lamb frequency, 𝑁 is the Brunt-
Väisäla frequency, and 𝑟u and 𝑟l are the radii of the upper and lower
turning points, respectively. Furthermore, 𝜙p represents the phase
difference due to near surface reflection, such that if the mode cavity
behaves linearly near the turning points, one expects 𝜙p = −0.5. In the
deep solar interior, where𝜔ac ≪ 𝜔, Eq. (2) simplifies to Duvall’s law
(Duvall 1982), which demonstrated that 𝜙p is a function of frequency.
Unlike Duvall’s law, Eq. (2) acknowledges the dependence of mode
frequency on 𝜔ac, such that 𝜔ac determines the location of 𝑟u. As
an alternative, this paper aims to investigate the p-mode frequencies
obtained from solutions to the radial Klein-Gordon equation, using a
finite acoustic potential to represent the acoustic cut-off frequency at
the photosphere, which then impacts reflectivity of the oscillations.
The focus of this paper is the direct impact acoustic cut-off has on
mode frequency. Therefore, in order to isolate this effect from the
additional ramifications of changes in the upper turning point, we start
by fixing the radius at which the modes are reflected by normalising
everything in terms of the length of the modes’ respective cavities.

Our ability to model oscillations in the near-surface region, where
𝑟u is located, is severely limited with observable discrepancies be-
tween models and observations that primarily stem from the break-
down of adiabaticity and limitations in modelling near-surface con-
vection and its interaction with the modes (see Basu 2016, for a recent
summary of the “surface term”). This, understandably, then impacts
our ability to understand the perturbation of oscillation frequencies
caused by the presence of a near-surface magnetic field.

The frequencies of the p-mode oscillations are not constant in
time. It has now been observed for some time that the p-mode fre-
quencies vary systematically through the Sun’s 11-yr Schwäbe mag-
netic activity cycle (e.g. Woodard & Noyes 1985; Palle et al. 1989;
Elsworth et al. 1990; Libbrecht & Woodard 1990). The frequency
variation has an amplitude of around 0.5 𝜇Hz and is in phase with
magnetic activity. However, the exact magnitude of the change in
frequency is dependent on both ℓ and the frequency of the mode (see
Broomhall et al. 2014, and references therein). Interestingly, Jiménez
et al. (2011) found that the acoustic cut-off frequency itself varies in
phase with the solar cycle.

Broadly speaking, the influence of the magnetic fields on the os-
cillations frequencies is often attributed to the direct impact of the
Lorentz force on the modes and the indirect effect of magnetic fields
on the properties of the acoustic cavities and the plasma contained
within them. However, the exact mechanism responsible for this vari-
ation is still not well understood. A number of papers suggest that
the direct impact of magnetic fields on the oscillations is too small
to alone explain the observed variation (e.g. Dziembowski & Goode
2005; Foullon & Roberts 2005). However, Kiefer & Roth (2018)
demonstrated that, unless the near-surface magnetic field is very
strong (such that the plasma 𝛽 < 1), the indirect perturbation on
oscillation frequencies is far smaller than the perturbation due to
the direct effect. Furthermore, the authors find that, for all magnetic
field configurations included in their study, the indirect effect acts to
decrease the oscillation frequencies i.e. changes them in the opposite
sense to the variations observed through the solar cycle. However,
Kiefer & Roth (2018) were able to approximately replicate the mag-
nitude and frequency dependence of the frequency shifts by invoking
a 10 kG decrease in toroidal magnetic field from cycle minimum to
maximum. In this paper, we consider the effect of a magnetic field
on the acoustic cut-off frequency and determine consequences of a
variation in the acoustic cut-off frequency on the modelled p-mode
frequencies.

Section 2 describes the model used in this paper and the main
assumptions made. Section 3 describes the impact of varying the

acoustic cut-off on the frequencies of trapped p-modes, while Sec-
tion 4 demonstrates that varying the acoustic cut-off in a physically
motivated way can replicate properties of observed solar cycle fre-
quency shifts, such as the magnitude and in-phase variation. Finally,
Section 5 gives the main conclusions of this work.

2 MODEL AND ASSUMPTIONS

The dynamics of acoustic waves with spherical degrees ℓ ≲ 100 in a
convection zone cavity can be considered predominantly vertical and
described by the following Klein-Gordon equation (see e.g. Kumar
& Lu 1991; Roxburgh & Vorontsov 1995; Vorontsov et al. 1998;
Nigam & Kosovichev 1998; Taroyan & Erdélyi 2008, and references
therein),

𝜕2𝜓

𝜕𝑟2 − 𝜕2𝜓

𝜕𝑡2
−𝑉 (𝑟)𝜓 = 𝑓 (𝑡, 𝑟), (3)

where 𝜓(𝑡, 𝑟) is a particular spherical component of the wave-caused
perturbation, 𝑉 (𝑟) is the potential barrier which represents an ef-
fective subphotospheric acoustic resonator, and 𝑓 (𝑡, 𝑟) is the source
function which, in general, mimics the excitation of acoustic waves
by convective zone motions. Non-adiabatic effects responsible for the
wave damping are omitted. In Eq. (3), we normalise the sound speed
𝑐s and the acoustic cavity depth 𝑎 to unity, so that the characteristic
wave frequencies described by Eq. (3) are measured in units of the
inverse acoustic transit time 1/𝜏A

1. For the acoustic potential 𝑉 (𝑟),
we choose a piecewise form,

𝑉 (𝑟) =


𝛼2, for 𝑟 ≥ 𝑎

0, for 0 < 𝑟 < 𝑎

≫ 𝛼2, for 𝑟 ≤ 0
(4)

which is illustrated in Fig. 1. Here, the parameter 𝛼 represents
the effective acoustic cut-off frequency at the photospheric level,
𝛼 = 𝜔ac (𝑟 = 𝑎) (cf. Fig. 5 in Basu et al. 2012, for example). Such a
form of𝑉 (𝑟) implies an acoustic resonator of a Fabry-Pérot type, i.e.
waves of practically all frequencies reflect from the lower boundary of
the resonator, 𝑟 = 0, while at the photospheric level, 𝑟 = 𝑎, waves with
frequencies below/above the acoustic cut-off 𝛼 reflect/propagate, re-
spectively. In this piecewise form of 𝑉 (𝑟), we neglect the variation
of the acoustic cut-off frequency 𝛼 with height, so that all waves with
frequencies below 𝛼 reflect at the same photospheric level, 𝑟 = 𝑎.
We also stress that the lower boundary of 𝑉 (𝑟) at 𝑟 = 0 only mimics
the lower turning of p-modes, as the described model is intrinsically
one-dimensional and, hence, cannot properly address the effect of
wave refraction.

Using the exact analytical solution to Eq. (3) given in e.g. Kumar
& Lu (1991) for a harmonic point source 𝑓 (𝑡, 𝑟), the Fourier power
spectrum of the wave function 𝜓(𝑡, 𝑟) in the vicinity of 𝑟 = 𝑎 can be
written as,

F (𝜔) =
���� 𝑓0 sin𝜔𝑟0

𝜔 cos𝜔 +
√
𝛼2 − 𝜔2 sin𝜔

����2 , (5)

where 𝑓0 and 𝑟0 are the source’s amplitude and position, and 𝜔 is the

1 Estimated, for example, through the standard solar model 𝑐2
s ≈ (𝛾 −

1)𝐺𝑀⊙ (𝑟−1 − 𝑅−1
⊙ ) (e.g. Christensen-Dalsgaard 2021, Eq. (43)) as 𝜏A =∫ 𝑅⊙

𝑅⊙−𝑎 𝑑𝑟/𝑐s, where 𝑅⊙ − 𝑎 is the lower turning point. For example, for
ℓ = 100 and oscillation frequency around 3000 𝜇Hz (radial harmonic 𝑛 = 7),
𝑎 ≈ 0.1𝑅⊙ (e.g. Aerts et al. 2010, Figs. 3.14 and 7.13) which gives 𝜏A ≈
20 min.
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Cut-off effects on the p-mode frequency 3

Figure 1. Acoustic potential 𝑉 (𝑟 ) given by Eq. (4), with partial (red) and
infinite (black dashed) reflectivity at the photosphere, 𝑟 = 𝑎. The width 𝑎 of
the potential𝑉 (𝑟 ) is determined by the effective penetration depth of acoustic
waves.

angular frequency of the excited acoustic wave. The typical shape
of the Fourier power spectrum prescribed by Eq. (5) is shown in
Fig. 2 for 𝛼 = 3, 6, and 9 of the inverse acoustic transit time 1/𝜏A,
with one, two, and three standing radial harmonics with 𝜔 < 𝛼

excited within the cavity (0 < 𝑟 < 𝑎), respectively. Outside the cav-
ity (𝑟 > 𝑎) these modes evanesce with the characteristic 𝑒-folding
length 𝜆𝑒 = 𝑐s/

√
𝛼2 − 𝜔2. For example, for the p-mode frequency

𝜔/2𝜋 = 3000 𝜇Hz, cut-off frequency 𝛼/2𝜋 = 5000 𝜇Hz, and sound
speed at the photosphere 𝑐s = 10 km/s, we obtain 𝜆𝑒 ≈ 400 km, i.e.
the perturbation caused by the p-mode trapped in the acoustic cavity
below the photosphere can reach about the temperature minimum
region in the solar atmosphere. This is in broad agreement with ob-
servations, where the amplitude of oscillations observed in different
intensity measurements at different wavelengths decreases if obser-
vations are made higher in the solar atmosphere. For example, Solar
and Heliospheric Observatory’s (SoHO’s) Variability of Solar IRra-
diance and Gravity Oscillations (ViRGO) made unresolved intensity
observations of the Sun at three different wavelengths. The response
functions of these observations peak at heights, separated by a few
10s of km (Jiménez et al. 2005). In turn, the oscillation amplitudes
drop by approximately a factor of 𝑒 (Fröhlich et al. 1997).

In this work, we consider the acoustic cut-off frequency 𝛼 as a free
parameter characterising the partial reflectivity of the photosphere,
and investigate the associated frequency corrections and modulation
of resonant acoustic waves trapped inside the cavity as effective p-
modes. For 𝜔 > 𝛼, the propagating acoustic waves can also form
peaks in the Fourier power spectrum due to the effect of constructive
interference, which is known as the phenomenon of pseudo-modes
(see e.g. Kosak et al. 2022, and references therein). However, the
further discussion of pseudo-modes is out of the scope of this work.

3 P-MODE FREQUENCY CORRECTIONS BY ACOUSTIC
CUT-OFF

Using Eq. (5), the peaks in the lower-frequency (𝜔 < 𝛼) part of the
Fourier spectrum shown in Fig. 2, occur when the denominator on its
right-hand side goes to zero. Thus, the eigenfrequencies of trapped
p-modes in the acoustic resonator given by Eq. (4) can be determined
from the following transcendental algebraic equation,

tan𝜔 + 𝜔
√
𝛼2 − 𝜔2

= 0. (6)

As such, the p-mode eigenfrequencies seem to be generally indepen-
dent of the source position 𝑟0 except for cases with 𝑟0 = 𝑎/𝑛 where 𝑛
is the integer number, resulting in the preferential excitation of even
or odd radial harmonics. Thus, the acoustic cut-off frequency 𝛼 ap-
pears as the only free parameter in Eq. (6) (given that the sound speed
𝑐s and the acoustic cavity depth 𝑎 are set to unity for normalisation).
Indeed, for a perfectly reflecting photosphere with 𝛼 → ∞, the p-
mode eigenfrequencies are determined by the condition tan𝜔 = 0,
resulting in𝜔 = 𝑛𝜋/𝜏A, i.e. are fully prescribed by the acoustic cavity
depth 𝑎 and the sound speed 𝑐s. Finite values of 𝛼, in turn, would lead
to a modification in the characteristic frequencies of the fundamental
and higher radial p-mode harmonics, as seen, for example, in Fig. 2.

To assess the modification of the p-mode frequencies caused by
the effect of finite reflectivity of the photosphere (finite 𝛼), we treat
Eq. (6) numerically in the mathematical software package Maple
2022 and visualise solutions for the first five radial harmonics in
Fig. 3 (left panel). For some fixed finite value of the acoustic cut-
off 𝛼, the obtained effective p-mode frequencies are clearly seen to
deviate from 𝑛𝜋 (normalised to 1/𝜏A). Furthermore, the magnitude
of the deviation increases with the radial harmonic number, 𝑛. More
specifically, when 𝜔 = 𝛼 (see where the blue and red lines meet in
the left-hand panel of Fig. 3), the effective p-mode frequency equals
𝜋/2 + (𝑛 − 1)𝜋. As 𝛼 then increases, the p-mode frequency, for each
radial harmonic, tends to 𝑛𝜋. The latter means, in particular, that for
each radial harmonic, the maximum deviation of the p-mode angular
frequency from 𝑛𝜋 is 𝜋/2 (normalised to 1/𝜏A) which is independent
of the harmonic number, 𝑛. For 𝜏A = 20 min (see Sec. 2), this results
in the maximum decrease in the p-mode cyclic frequency about
200 𝜇Hz, obtained as 𝜋/2/2𝜋/𝜏A. The closer the acoustic cut-off
frequency is to 𝑛𝜋, the bigger the deviation. The physical nature of
this effect is connected with the decrease of the effective acoustic
wave speed with 𝛼. Indeed, the effective acoustic wave speed can
be determined as 𝜔𝑛/𝑘𝑛 where 𝑘𝑛 is the wavenumber of the 𝑛-
th radial harmonic. For trapped p-modes, 𝑘𝑛 is fully prescribed by
the cavity size 𝑎 as 𝑘𝑛 = 𝑛𝜋/𝑎 and thus is independent of the
acoustic cut-off frequency, 𝛼. The right-hand panel in Fig. 3 shows
the minimum possible effective acoustic wave speed, determined as
(𝜋/2 + [𝑛 − 1]𝜋)/𝑛𝜋 (normalised to 𝑐s), for the first twenty radial
harmonics. According to it, the effective acoustic wave speed can
differ from the standard sound speed 𝑐s by 20%–50% for lower radial
harmonics and by just a few per cent for higher radial harmonics due
to the effect of 𝛼. For all 𝑛s, this modification in the effective acoustic
wave speed with 𝛼 results in up to 𝜋/2 modification in the effective
p-mode frequency, as pointed out above.

We now consider the impact of 𝛼 on the frequency separation
Δ𝜔𝑛 = 𝜔𝑛 − 𝜔𝑛−1 between two consecutive radial harmonics, re-
ferred to as the large frequency separation in observations (see Gar-
cía & Ballot 2019, and references therein for a recent review in the
context of asteroseismology). The left-hand panel in Fig. 4 shows
Δ𝜔𝑛 estimated from the numerical solution of Eq. (6) (see Fig. 3,
left panel) for several values of the cut-off frequency 𝛼. First, we
observe that Δ𝜔𝑛 predicted by Eq. (6) appears to be smaller than 𝜋

MNRAS 000, 1–8 (2024)
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Figure 2. Fourier power spectra given by Eq. (5) for acoustic waves trapped within the acoustic cavity illustrated in Fig. 1, with 𝑟0 = 0.9𝑎, 𝑓0 = 1 a.u. (the
addressed problem is linear), and the acoustic cut-off angular frequency 𝛼 =3 (left), 6 (middle), and 9 (right) normalised to the acoustic travel time across the
cavity, 𝜏A ≈ 20 min (see Sec. 2). The vertical dashed lines in each panel indicate the values of trapped mode frequencies, 𝑛𝜋/𝜏A in the absence of the cut-off
effect.

Figure 3. Left: Normalised angular frequency (blue) of the first five (𝑛 = 1–5) radial harmonics of acoustic waves trapped within the acoustic cavity (Fig. 1) vs.
normalised acoustic cut-off angular frequency, obtained with Eq. (6). The horizontal dotted lines indicate the trapped mode frequencies (∝ 𝑛𝜋) in the absence of
the cut-off effect (as 𝛼 tends to infinity). The red dashed line shows 𝜔 = 𝛼. Right: Decrease in the effective speed of trapped acoustic waves vs. radial harmonic
number, caused by the cut-off effect. The minimum effective acoustic wave speed is determined as (𝜋/2 + [𝑛 − 1]𝜋 )/𝑛𝜋 (normalised to 𝑐s, see Sec. 3).

(in normalised units) for all cases considered. Also, Δ𝜔𝑛 is found to
be generally non-uniform, i.e. it decreases with the radial harmonic
number 𝑛. On the other hand, this non-uniformity seems to be less
pronounced for higher 𝛼, when more radial harmonics are excited.
For example, for 𝛼𝜏A ≈ 14.4 only five trapped radial harmonics exist
and Δ𝜔𝑛 decreases by about 10% for 𝑛 varying from 1–2 to 4–5. In
contrast, for 𝛼𝜏A ≈ 62.5, this decrease of Δ𝜔𝑛 with 𝑛 (from several
lowest-𝑛 harmonics up to 𝑛 = 20) is found to be about 4%.

For practical purposes, such behaviour of Δ𝜔𝑛 with the radial
harmonic number 𝑛 and the cut-off frequency 𝛼 motivates us to
represent 𝜔𝑛 and 𝜔𝑛−1 through the constant frequency 𝜔0 = 𝜋/𝜏A
(prescribed by the acoustic travel time 𝜏A through the cavity) and
some dimensionless non-asymptotic corrections 𝜀𝑛 (𝛼) and 𝜀𝑛−1 (𝛼)

as

𝜔𝑛 = (𝑛 + 𝜀𝑛)𝜔0, (7)
𝜔𝑛−1 = (𝑛 − 1 + 𝜀𝑛−1)𝜔0, (8)

which is convenient for determining frequency corrections 𝜀𝑛 and
𝜀𝑛−1 caused by the effect of acoustic cut-off from observations. In
contrast to the asymptotic regime (e.g. Mosser et al. 2013), 𝜀𝑛 and
𝜀𝑛−1 may in general vary with both 𝑛 and 𝛼 in Eqs. (7)–(8). The
right-hand panel of Fig. 4 shows how the cut-off effect is pronounced
in the standard echelle diagram, where the departure from the vertical
shape increases with the decrease in𝛼. Furthermore, one can consider
a potentially observable dimensionless parameter Δ𝜔𝑛/𝜔0 = 1 +
𝜀𝑛 − 𝜀𝑛−1 and assess its expected values treating 𝜀𝑛 and 𝜀𝑛−1 as

MNRAS 000, 1–8 (2024)
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Figure 4. Left: Frequency separation between modes of successive radial harmonics (Δ𝜔𝑛 = 𝜔𝑛 − 𝜔𝑛−1, also known as large frequency separation) shown
in the left panel of Fig. 3 vs. radial harmonic number, for the normalised acoustic cut-off angular frequency 𝛼𝜏A = 14.4 (blue, 𝑛 = 1–5 excited), 24 (cyan,
𝑛 = 1–8 excited), 33.6 (green, 𝑛 = 1–11 excited), 43.3 (yellow, 𝑛 = 1–14 excited), 52.9 (dark orange, 𝑛 = 1–17 excited), and 62.5 (red, 𝑛 = 1–20 excited).
Right: Echelle diagram (for the first several radial harmonics excited) illustrating the dependence of the effective p-mode frequency 𝜔𝑛 on the corresponding
frequency correction | 𝜀𝑛 | caused by the cut-off effect, obtained as modulo between 𝜔𝑛 and 𝜔0 (see Eq. (7)), for 𝛼𝜏A = 1000 (black, effect is practically
absent), 𝛼𝜏A = 100 (grey), 𝛼𝜏A = 62.5 (red), 𝛼𝜏A = 43.3 (yellow), and 𝛼𝜏A = 24 (cyan).

free parameters (see grey contour lines in Fig. 5). Thus, Δ𝜔𝑛/𝜔0 is
expected to equal unity for 𝜀𝑛 = 𝜀𝑛−1; to be > 1 for 𝜀𝑛 > 𝜀𝑛−1;
and to be < 1 for 𝜀𝑛 < 𝜀𝑛−1. Substituting our numerical solution
for 𝜔𝑛 and 𝜔𝑛−1 shown in Fig. 3 (left panel) to Eqs. (7)–(8), we
obtain that −0.5 ≤ 𝜀𝑛 < 𝜀𝑛−1 < 0 for finite 𝛼 and 𝜀𝑛 → 𝜀𝑛−1 →
0 for 𝛼 → ∞, resulting in Δ𝜔𝑛/𝜔0 ≲ 1. For illustration, Fig. 5
shows 𝜀𝑛 vs. 𝜀𝑛−1 caused by the effect of acoustic cut-off for the
pairs of radial harmonics with 𝑛 = 2 and 1, 𝑛 = 4 and 3, 𝑛 = 20
and 19. The intersection of those lines with the grey contours of
the parameter Δ𝜔𝑛/𝜔0 provides the corresponding values of the
frequency correction parameters 𝜀𝑛 and 𝜀𝑛−1. Thus, if one has the
value ofΔ𝜔𝑛/𝜔0 for a given pair of radial harmonics 𝑛 and 𝑛−1 (and
fixed spherical degree ℓ) from observations, Fig. 5 can potentially be
used for constraining the frequency corrections 𝜀𝑛 and 𝜀𝑛−1, caused
by the effect of the photospheric acoustic cut-off2, and discriminating
it from other effects (e.g. stellar density, radius, gravity, rotation,
effective temperature and ionisation effects, Stello et al. 2009; Miglio
et al. 2009; Hekker et al. 2011; Bedding et al. 2020; Hasanzadeh et al.
2021) influencing Δ𝜔𝑛/𝜔0.

Furthermore, by substituting 𝜔𝑛 from Eq. (7) into Eq. (6) and
treating 𝜀𝑛 as a small parameter, we can obtain an approximate
explicit analytical relationship between 𝜀𝑛 and the acoustic cut-off
frequency 𝛼 as

𝜀𝑛 ≈ − 𝑛√︃
𝛼2 − 𝑛2𝜔2

0

, (9)

where both 𝛼 and 𝜔0 are normalised to the acoustic travel time 𝜏A.
Our tests showed that the approximate solution Eq. (9) agrees well

2 For example, for 𝜔0/2𝜋 ≈ 416 𝜇Hz (𝜏A = 20 min) and the large separation
Δ𝜔𝑛/2𝜋 = 330 𝜇Hz between radial harmonics 𝑛 = 4 and 3 with fixed
spherical degree ℓ = 100, we obtain Δ𝜔𝑛/𝜔0 to be about 0.8 resulting in
the corresponding frequency corrections 𝜀4 ≈ −0.48 and 𝜀3 ≈ −0.28 (see
Fig. 5).

with the full numerical solution of Eq. (6) for |𝜀𝑛 | ≲ 0.1, with the
mismatch below 10%.

4 11-YEAR FREQUENCY SHIFTS

In this section, we propose a mechanism for how the 11-year variabil-
ity of the Sun’s magnetic activity can influence p-mode oscillation
frequencies (see e.g. Roberts & Campbell 1986; Roberts 1996) via
modulation of the photospheric acoustic cut-off frequency, 𝛼. In-
deed, the effect of the magnetic field on 𝛼 can be isolated as (e.g.
Afanasyev & Nakariakov 2015),

𝛼 =
𝛼HD√︁

1 + 𝛾𝛽/2
, (10)

where 𝛽 is the standard plasma parameter given by the ratio of the
thermal pressure to the magnetic pressure, 𝛾 is the standard adiabatic
index, and 𝛼HD is the value of the acoustic cut-off fully determined
by hydrodynamic parameters of the medium (i.e. sound speed and
density scale height) in the infinite field regime (𝛽 → 0).

Demanding 𝛽 in Eq. (10) to vary harmonically with the 11-year
periodicity and small amplitude around some equilibrium value, 𝛽 =

𝛽0 (1+ 𝛿𝛽), the perturbed acoustic cut-off 𝛼′ can be Taylor-expanded
around small parameter 𝛿𝛽 as

𝛼′ ≈ 𝛼0

(
1 − 𝛿𝛽

2

)
. (11)

Here, we used condition 𝛽0 ≫ 1 typical for the solar convection
zone (e.g. Fan 2004), and 𝛼0 stands for the unperturbed value of
the acoustic cut-off. Thus, taking a harmonic function with e.g. 5%
amplitude for 𝛿𝛽 (see Fig. 6, left panel), we obtain 𝛼′ to vary in
anti-phase with the same oscillation period. Such a behaviour of the
acoustic cut-off with 𝛽 is generally consistent with observations of
the 11-yr solar cycle, where the cut-off frequency is found to vary
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Figure 5. Contour-plot (thin grey lines) of the parameter Δ𝜔𝑛/𝜔0 char-
acterising the possible departure of the frequency separation Δ𝜔𝑛 from
𝜔0 = 𝜋/𝜏A (the value of Δ𝜔𝑛 in the absence of the cut-off effect), caused
by the frequency corrections 𝜀𝑛 and 𝜀𝑛−1 introduced in Eqs. (7)–(8). The
red, green, and blue thick lines show the parametric curves of 𝜀𝑛 and 𝜀𝑛−1
caused by the cut-off effect for pairs of successive radial harmonics 𝑛 = 2 and
1 (red), 4 and 3 (green), 20 and 19 (blue) and the normalised acoustic cut-off
angular frequency 𝛼𝜏A varying respectively from 4.7 (red), 11 (green), and
61.3 (blue) to 1000 (all). For 𝛼𝜏A → ∞, the red, green, and blue curves
tend to the Δ𝜔𝑛/𝜔0 = 1 contour. The yellow diamond shows 𝜀4 and 𝜀3 for
Δ𝜔𝑛/𝜔0 = 0.8, for illustration.

in phase with the radio flux (e.g. Jiménez et al. 2011), which in turn
has inverse proportionality to 𝛽.

We now substitute the acoustic cut-off 𝛼′ Eq. (11) modulated by
the 11-yr variability of the plasma parameter 𝛽 into our numeri-
cal solution of Eq. (6) for 𝜔𝑛 shown in Fig. 3, left panel. Thus,
small-amplitude harmonic modulation of the cut-off frequency in
the vicinity of 𝛼0 results in the corresponding small-amplitude peri-
odic modulation of the p-mode oscillation frequency 𝜔𝑛, illustrated,
for example, for the radial harmonic 𝑛 = 5 and 𝛼0𝜏A = 15 in the left-
hand panel of Fig. 6. The phase behaviour of 𝜔𝑛 modulated by this
mechanism is prescribed, in general, by the sign of the gradient of the
function 𝜔𝑛 (𝛼). In our case (Fig. 3), 𝜔𝑛 tends to increase with 𝛼 (i.e.
the gradient is positive), which results in the in-phase 11-year modu-
lation of the acoustic cut-off and p-mode frequency shift (both are in
anti-phase with the plasma parameter 𝛽) in Fig. 6. The latter is also
consistent with the observed behaviour (e.g. Woodard & Noyes 1985;
Palle et al. 1989; Elsworth et al. 1990; Libbrecht & Woodard 1990;
Broomhall et al. 2014, and references therein). In turn, the amplitude
of the obtained frequency shift is prescribed by the value of the gra-
dient of the function𝜔𝑛 (𝛼). Thus, according to the left-hand panel in
Fig. 6, the arbitrarily chosen 5% relative amplitude in the plasma pa-
rameter 𝛽 results in 2.5% relative amplitude in the cut-off frequency
𝛼′ (∼ 125 𝜇Hz for 𝛼0 = 5000 𝜇Hz) and in much lower relative am-
plitude in the p-mode frequency shift 𝛿𝜔𝑛 as usually seen in obser-
vations. The right-hand panel in Fig. 6 shows the frequency shift am-
plitude 𝛿𝜔𝑛 estimated as 𝛿𝜔𝑛 = [𝜔𝑛 (𝛼max) − 𝜔𝑛 (𝛼min)] /2𝜔𝑛 (𝛼0)
for radial harmonics 𝑛 = 5, 10, 15, and 20, which rapidly drops below
0.05% with 𝛼. Furthermore, the obtained 11-yr frequency shift am-
plitudes 𝛿𝜔𝑛 tend to increase with the radial harmonic number, 𝑛 (see

Fig. 7). Thus, our mechanism readily reproduces the observed typi-
cal amplitudes of the p-mode frequency shift and its phase behaviour
relative to other 11-yr solar cycle proxies.

5 DISCUSSION AND CONCLUSIONS

We studied the effects of the photospheric acoustic cut-off on the
characteristic frequencies of p-modes trapped in a sub-photospheric
acoustic cavity, using the Klein-Gordon equation with a piecewise
acoustic potential. The developed approach allowed us to assess the
corrections to the p-mode frequencies, caused by the cut-off effect,
and to link the observed 11-yr helioseismic frequency shifts with
the impact of the magnetic field on the photospheric acoustic cut-off
frequency. In other words, by treating the sub-photospheric acous-
tic cavity as a resonator of a Fabry-Pérot type and varying its re-
flection/transmission property (i.e. the photospheric acoustic cut-off
frequency) periodically, we managed to reproduce the periodic fre-
quency modulation of acoustic waves trapped inside the resonator.
The main findings of this study can be summarised as follows:

• Finite values of the photospheric acoustic cut-off frequency lead
to the decrease in the characteristic frequencies of trapped p-modes.
This is connected with the modification of the effective speed of
acoustic waves by the cut-off effect. The revealed frequency correc-
tion is larger for higher radial harmonics, with frequencies closer to
the acoustic cut-off frequency. Our estimations show that for ℓ = 100
(acoustic travel time through the cavity 𝜏A ≈ 20 min), the maximum
decrease in the p-mode frequency can reach 200 𝜇Hz (obtained as
𝜋/2/2𝜋/𝜏A, for all radial harmonics).
• We derived an approximate but explicit relationship linking the

expected frequency correction 𝜀𝑛 with the acoustic cut-off frequency
𝛼 and the radial harmonic number 𝑛 (Eq. (9)). Moreover, we proposed
a scheme for estimating the frequency correction 𝜀𝑛 in observations,
using the large frequency separation Δ𝜔𝑛. In particular, the cut-off
effect is shown to result in Δ𝜔𝑛/𝜔0 < 1, where 𝜔0 = 𝜋/𝜏A (see
Fig. 5). This constraint can be useful for disentangling the cut-off
effect from other effects influencing Δ𝜔𝑛/𝜔0 in future studies.

• The large frequency separation Δ𝜔𝑛 is found to decrease with
the increasing radial harmonic number 𝑛 due to the cut-off effect.
However, this decrease is found to be only mild, by 4–10% for all
cases considered. Observationally, the behaviour of Δ𝜔𝑛 with 𝑛 is
seen to be non-monotonic for low-ℓ modes. It initially decreases with
increasing 𝑛 at low 𝑛 and then increases for higher 𝑛 (see e.g. Karoff
2007; Mosser et al. 2013; Gaulme et al. 2010, for the Sun and other
stars), which may indicate the cut-off effect is counteracted by other
mechanisms. In these low-ℓ observations, the cut-off frequency cor-
responds to around 𝑛 = 36 and we can readily see modes in a broad
interval of 𝑛s (e.g. for ℓ = 0–2, we can observe 𝑛 = 9–30). For higher
ℓ ≃ 100, the cut-off is around 𝑛 = 15, and there Δ𝜔𝑛 does seem
to decrease with increasing 𝑛 monotonically (see e.g. the standard
SoHO/MDI frequency-degree diagram). The latter is broadly consis-
tent with our result. However, a more detailed comparison, such as
the decrease rate and its functional form predicted theoretically and
seen in observations, would require a dedicated study.

• Low-amplitude periodic modulation of the plasma parameter 𝛽
at the photosphere is shown to result in the modulation of the acoustic
cut-off and, more importantly, in the corresponding periodic shifts
of trapped p-mode frequencies through the cut-off effect (see Fig. 6).
Using our model, we managed to reproduce the observed amplitudes
of the 11-year frequency shift and its in-phase behaviour with other
solar cycle proxies, such as radio flux (inversely proportional to
𝛽). This is in contrast to previous works discussed in Section 1,
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Figure 6. Left: Time profile of the 11-year periodic perturbation of the plasma parameter 𝛽 (ratio of the thermal pressure to the magnetic pressure) at the
photosphere, 𝛿𝛽 (𝑡 ) (black) resulting in the perturbation of the acoustic cut-off frequency (𝛼′ − 𝛼0 )/𝛼0 given by Eq. (11) (green) and in the perturbation of the
p-mode frequency [𝜔𝑛 (𝛼′ ) − 𝜔𝑛 (𝛼0 ) ]/𝜔𝑛 (𝛼0 ) for 𝑛 = 5 (𝛼0𝜏A = 15) (red), by the mechanism described in Sec. 4. Right: Relative amplitude of the p-mode
frequency shifts 𝛿𝜔𝑛 = [𝜔𝑛 (𝛼max ) − 𝜔𝑛 (𝛼min ) ] /2𝜔𝑛 (𝛼0 ) vs. acoustic cut-off frequency 𝛼0 for radial harmonics 𝑛 = 5 (black), 10 (blue), 15 (green), and
20 (red).

Figure 7. Dependence of the p-mode frequency shift amplitude 𝛿𝜔𝑛 (see
Fig. 6 and Sec. 4) on the radial harmonic number 𝑛 for the acoustic cut-off
frequency 𝛼0𝜏A = 40 (red), 50 (green), and 60 (blue).

where a strong perturbation to the toroidal magnetic field required
for reproducing the observed magnitude and frequency dependence
of the p-mode frequency shifts.

• The detected dependence of the frequency shift amplitude on
the radial harmonic number 𝑛 (Fig. 7) is very reminiscent of the trend
observed in real data (e.g. Libbrecht & Woodard 1990; Chaplin et al.
2001; Broomhall 2017), which is usually related to the frequency-
dependence of the upper turning points of the modes and a near-
surface perturbation of the modes by a magnetic field (Cox 1980;
Gough 1990; Goldreich et al. 1991). Our model suggests that the
cut-off effect may also play a role in those observations. A similar
frequency (or 𝑛) dependence has also been observed on some other
stars (e.g. Salabert et al. 2011, 2016). However, other stars seem
to exhibit an oscillatory relationship between frequency shift and

frequency, which can potentially be attributed to a deeper seated
magnetic field (e.g. Salabert et al. 2018). It would be interesting to
determine whether the acoustic cut-off frequencies of these stars also
vary with time.

The presented study is based on a 1D analytical model which has
a number of important shortcomings. For example, we neglected the
2D effects responsible for both the acoustic wave refraction at the
lower turning point and the possible direct impact of the magnetic
Lorentz force on the modes. To account for these, a generalisation of
our study using a more advanced 2D model of (magneto)acoustic-
gravity waves in a stratified medium, described in e.g. Roberts (2006);
Costa et al. (2018), is required. Likewise, our study can be expanded
upon considering more realistic smooth radial profiles of the acoustic
potential 𝑉 (𝑟), thus incorporating the dependence of the upper turn-
ing point on the mode frequency. For example, Ong & Basu (2019)
used the WKB approximation to determine how the large frequency
separation is affected by the acoustic cut-off effect. In their model,
the acoustic cut-off is non-zero and varying in the solar interior,
such that the mode frequencies are always greater than the acoustic
cut-off. This means that the acoustic cut-off determines the radius
of reflection and this radius varies from mode to mode. Our model
of the acoustic cut-off as a step function is more simplistic, and was
a necessary step in order to isolate the direct impact the acoustic
cut-off has on mode frequencies, but adopting a set-up similar to
that used bu Ong & Basu (2019), would represent and interesting
extension to this work. The exact analytical solution to the governing
Klein-Gordon equation (3) used in our study is derived under the
assumption of a monochromatic harmonic driver, while in reality
the convection zone motions driving p-mode oscillations are rather
broadband and stochastic. Thus, the stochastic excitation of p-modes
with the cut-off effect can also be studied in terms of our model by
adjusting the source function on the right-hand side of Eq. (3). Fi-
nally, possible interactions of the evanescent part of p-modes, which
was shown to reach up to the temperature minimum region in the
Sun’s atmosphere, with chromospheric resonators (e.g. Botha et al.
2011; Zhugzhda & Sych 2014) represent another interesting avenue
for development. In all those studies, the low-dimensional results
presented in this work can be used as a limiting case for comparison
and validation.

MNRAS 000, 1–8 (2024)



8 D. Y. Kolotkov et al.

ACKNOWLEDGEMENTS

The work is supported by the STFC consolidated grant
ST/X000915/1. DYK also acknowledge the Latvian Council of Sci-
ence Project No. lzp2022/1-0017. The authors are grateful to Prof.
Yvonne Elsworth FRS and Dr. Sergei Vorontsov for stimulating dis-
cussions.

DATA AVAILABILITY

The data underlying this article are available in the article and in the
references therein.

REFERENCES

Aerts C., Christensen-Dalsgaard J., Kurtz D. W., 2010, Asteroseismology,
doi:10.1007/978-1-4020-5803-5.

Afanasyev A. N., Nakariakov V. M., 2015, A&A, 582, A57
Basu S., 2016, Living Reviews in Solar Physics, 13, 2
Basu S., Broomhall A.-M., Chaplin W. J., Elsworth Y., 2012, ApJ, 758, 43
Bedding T. R., et al., 2020, Nature, 581, 147
Botha G. J. J., Arber T. D., Nakariakov V. M., Zhugzhda Y. D., 2011, ApJ,

728, 84
Broomhall A. M., 2017, Sol. Phys., 292, 67
Broomhall A. M., Chatterjee P., Howe R., Norton A. A., Thompson M. J.,

2014, Space Sci. Rev., 186, 191
Chaplin W. J., Appourchaux T., Elsworth Y., Isaak G. R., New R., 2001,

MNRAS, 324, 910
Christensen-Dalsgaard J., 2021, Living Reviews in Solar Physics, 18, 2
Costa A., Schneiter M., Zurbriggen E., 2018, MNRAS, 480, 623
Cox J. P., 1980, Theory of Stellar Pulsation. (PSA-2), Volume 2. Vol. 2
Deubner F.-L., Gough D., 1984, ARA&A, 22, 593
Duvall T. L. J., 1982, Nature, 300, 242
Dziembowski W. A., Goode P. R., 2005, ApJ, 625, 548
Elsworth Y., Howe R., Isaak G. R., McLeod C. P., New R., 1990, Nature, 345,

322
Fan Y., 2004, Living Reviews in Solar Physics, 1, 1
Foullon C., Roberts B., 2005, A&A, 439, 713
Fröhlich C., et al., 1997, Sol. Phys., 170, 1
García R. A., Ballot J., 2019, Living Reviews in Solar Physics, 16, 4
Gaulme P., et al., 2010, A&A, 524, A47
Goldreich P., Murray N., Willette G., Kumar P., 1991, ApJ, 370, 752
Gough D. O., 1990, in Osaki Y., Shibahashi H., eds, , Vol. 367, Progress

of Seismology of the Sun and Stars. p. 283, doi:10.1007/3-540-53091-
610.1007/3-540-53091-6_93

Gough D. O., 1993, in Astrophysical Fluid Dynamics - Les Houches 1987.
pp 399–560

Hasanzadeh A., Safari H., Ghasemi H., 2021, MNRAS, 505, 1476
Hekker S., Basu S., Elsworth Y., Chaplin W. J., 2011, MNRAS, 418, L119
Jiménez A., Jiménez-Reyes S. J., García R. A., 2005, ApJ, 623, 1215
Jiménez A., García R. A., Pallé P. L., 2011, ApJ, 743, 99
Karoff C., 2007, MNRAS, 381, 1001
Kiefer R., Roth M., 2018, ApJ, 854, 74
Kosak K., Kiefer R., Broomhall A. M., 2022, MNRAS, 512, 5743
Kumar P., Lu E., 1991, ApJ, 375, L35
Libbrecht K. G., Woodard M. F., 1990, Nature, 345, 779
Miglio A., et al., 2009, A&A, 503, L21
Mosser B., et al., 2013, A&A, 550, A126
Nigam R., Kosovichev A. G., 1998, ApJ, 505, L51
Ong J. M. J., Basu S., 2019, ApJ, 870, 41
Palle P. L., Regulo C., Roca Cortes T., 1989, A&A, 224, 253
Roberts B., 1996, Bulletin of the Astronomical Society of India, 24, 199
Roberts B., 2006, Philosophical Transactions of the Royal Society of London

Series A, 364, 447
Roberts B., Campbell W. R., 1986, Nature, 323, 603

Roxburgh I. W., Vorontsov S. V., 1995, MNRAS, 272, 850
Salabert D., Régulo C., Ballot J., García R. A., Mathur S., 2011, A&A, 530,

A127
Salabert D., et al., 2016, A&A, 589, A118
Salabert D., Régulo C., Pérez Hernández F., García R. A., 2018, A&A, 611,

A84
Stello D., et al., 2009, ApJ, 700, 1589
Taroyan Y., Erdélyi R., 2008, Sol. Phys., 251, 523
Vorontsov S. V., Jefferies S. M., Duval T. L. J., Harvey J. W., 1998, MNRAS,

298, 464
Woodard M. F., Noyes R. W., 1985, Nature, 318, 449
Zhugzhda Y. D., Sych R. A., 2014, Astronomy Letters, 40, 576

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 000, 1–8 (2024)

http://dx.doi.org/10.1007/978-1-4020-5803-5. 
http://dx.doi.org/10.1051/0004-6361/201526530
https://ui.adsabs.harvard.edu/abs/2015A&A...582A..57A
http://dx.doi.org/10.1007/s41116-016-0003-4
https://ui.adsabs.harvard.edu/abs/2016LRSP...13....2B
http://dx.doi.org/10.1088/0004-637X/758/1/43
https://ui.adsabs.harvard.edu/abs/2012ApJ...758...43B
http://dx.doi.org/10.1038/s41586-020-2226-8
https://ui.adsabs.harvard.edu/abs/2020Natur.581..147B
http://dx.doi.org/10.1088/0004-637X/728/2/84
https://ui.adsabs.harvard.edu/abs/2011ApJ...728...84B
http://dx.doi.org/10.1007/s11207-017-1068-5
https://ui.adsabs.harvard.edu/abs/2017SoPh..292...67B
http://dx.doi.org/10.1007/s11214-014-0101-3
https://ui.adsabs.harvard.edu/abs/2014SSRv..186..191B
http://dx.doi.org/10.1046/j.1365-8711.2001.04357.x
https://ui.adsabs.harvard.edu/abs/2001MNRAS.324..910C
http://dx.doi.org/10.1007/s41116-020-00028-3
https://ui.adsabs.harvard.edu/abs/2021LRSP...18....2C
http://dx.doi.org/10.1093/mnras/sty1828
https://ui.adsabs.harvard.edu/abs/2018MNRAS.480..623C
http://dx.doi.org/10.1146/annurev.aa.22.090184.003113
https://ui.adsabs.harvard.edu/abs/1984ARA&A..22..593D
http://dx.doi.org/10.1038/300242a0
https://ui.adsabs.harvard.edu/abs/1982Natur.300..242D
http://dx.doi.org/10.1086/429712
https://ui.adsabs.harvard.edu/abs/2005ApJ...625..548D
http://dx.doi.org/10.1038/345322a0
https://ui.adsabs.harvard.edu/abs/1990Natur.345..322E
https://ui.adsabs.harvard.edu/abs/1990Natur.345..322E
http://dx.doi.org/10.12942/lrsp-2004-1
https://ui.adsabs.harvard.edu/abs/2004LRSP....1....1F
http://dx.doi.org/10.1051/0004-6361:20041910
https://ui.adsabs.harvard.edu/abs/2005A&A...439..713F
http://dx.doi.org/10.1023/A:1004969622753
https://ui.adsabs.harvard.edu/abs/1997SoPh..170....1F
http://dx.doi.org/10.1007/s41116-019-0020-1
https://ui.adsabs.harvard.edu/abs/2019LRSP...16....4G
http://dx.doi.org/10.1051/0004-6361/201014142
https://ui.adsabs.harvard.edu/abs/2010A&A...524A..47G
http://dx.doi.org/10.1086/169858
https://ui.adsabs.harvard.edu/abs/1991ApJ...370..752G
http://dx.doi.org/10.1007/3-540-53091-610.1007/3-540-53091-6_93
http://dx.doi.org/10.1007/3-540-53091-610.1007/3-540-53091-6_93
http://dx.doi.org/10.1093/mnras/stab1411
https://ui.adsabs.harvard.edu/abs/2021MNRAS.505.1476H
http://dx.doi.org/10.1111/j.1745-3933.2011.01156.x
https://ui.adsabs.harvard.edu/abs/2011MNRAS.418L.119H
http://dx.doi.org/10.1086/428879
https://ui.adsabs.harvard.edu/abs/2005ApJ...623.1215J
http://dx.doi.org/10.1088/0004-637X/743/2/99
https://ui.adsabs.harvard.edu/abs/2011ApJ...743...99J
http://dx.doi.org/10.1111/j.1365-2966.2007.12340.x
https://ui.adsabs.harvard.edu/abs/2007MNRAS.381.1001K
http://dx.doi.org/10.3847/1538-4357/aaa3f7
https://ui.adsabs.harvard.edu/abs/2018ApJ...854...74K
http://dx.doi.org/10.1093/mnras/stac647
https://ui.adsabs.harvard.edu/abs/2022MNRAS.512.5743K
http://dx.doi.org/10.1086/186082
https://ui.adsabs.harvard.edu/abs/1991ApJ...375L..35K
http://dx.doi.org/10.1038/345779a0
https://ui.adsabs.harvard.edu/abs/1990Natur.345..779L
http://dx.doi.org/10.1051/0004-6361/200912822
https://ui.adsabs.harvard.edu/abs/2009A&A...503L..21M
http://dx.doi.org/10.1051/0004-6361/201220435
https://ui.adsabs.harvard.edu/abs/2013A&A...550A.126M
http://dx.doi.org/10.1086/311594
https://ui.adsabs.harvard.edu/abs/1998ApJ...505L..51N
http://dx.doi.org/10.3847/1538-4357/aaf1b5
https://ui.adsabs.harvard.edu/abs/2019ApJ...870...41O
https://ui.adsabs.harvard.edu/abs/1989A&A...224..253P
https://ui.adsabs.harvard.edu/abs/1996BASI...24..199R
http://dx.doi.org/10.1098/rsta.2005.1709
http://dx.doi.org/10.1098/rsta.2005.1709
https://ui.adsabs.harvard.edu/abs/2006RSPTA.364..447R
http://dx.doi.org/10.1038/323603a0
https://ui.adsabs.harvard.edu/abs/1986Natur.323..603R
http://dx.doi.org/10.1093/mnras/272.4.850
https://ui.adsabs.harvard.edu/abs/1995MNRAS.272..850R
http://dx.doi.org/10.1051/0004-6361/201116633
https://ui.adsabs.harvard.edu/abs/2011A&A...530A.127S
https://ui.adsabs.harvard.edu/abs/2011A&A...530A.127S
http://dx.doi.org/10.1051/0004-6361/201527978
https://ui.adsabs.harvard.edu/abs/2016A&A...589A.118S
http://dx.doi.org/10.1051/0004-6361/201731714
https://ui.adsabs.harvard.edu/abs/2018A&A...611A..84S
https://ui.adsabs.harvard.edu/abs/2018A&A...611A..84S
http://dx.doi.org/10.1088/0004-637X/700/2/1589
https://ui.adsabs.harvard.edu/abs/2009ApJ...700.1589S
http://dx.doi.org/10.1007/s11207-008-9154-3
https://ui.adsabs.harvard.edu/abs/2008SoPh..251..523T
http://dx.doi.org/10.1046/j.1365-8711.1998.01630.x
https://ui.adsabs.harvard.edu/abs/1998MNRAS.298..464V
http://dx.doi.org/10.1038/318449a0
https://ui.adsabs.harvard.edu/abs/1985Natur.318..449W
http://dx.doi.org/10.1134/S1063773714090059
https://ui.adsabs.harvard.edu/abs/2014AstL...40..576Z

	Introduction
	Model and assumptions
	P-mode frequency corrections by acoustic cut-off
	11-year frequency shifts
	Discussion and Conclusions

